Global land cover mapping from MODIS: algorithms and early results

M.A. Friedla,*, D.K. McIvera, J.C.F. Hodgesa, X.Y. Zhanga, D. Muchoneyb, A.H. Strahlera, C.E. Woodcocka, S. Gopala, A. Schneidera, A. Coopera, A. Baccinia, F. Gaoa, C. Schaafa

aDepartment of Geography and Center for Remote Sensing, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA
bConservation International, 1919 M Street, NW Suite 600, Washington, DC 20036, USA

Received 6 April 2001; received in revised form 4 December 2001; accepted 10 February 2002

Abstract

Until recently, advanced very high-resolution radiometer (AVHRR) observations were the only viable source of data for global land cover mapping. While many useful insights have been gained from analyses based on AVHRR data, the availability of moderate resolution imaging spectroradiometer (MODIS) data with greatly improved spectral, spatial, geometric, and radiometric attributes provides significant new opportunities and challenges for remote sensing-based land cover mapping research. In this paper, we describe the algorithms and databases being used to produce the MODIS global land cover product. This product provides maps of global land cover at 1-km spatial resolution using several classification systems, principally that of the IGBP. To generate these maps, a supervised classification methodology is used that exploits a global database of training sites interpreted from high-resolution imagery in association with ancillary data. In addition to the IGBP class at each pixel, the MODIS land cover product provides several other parameters including estimates for the classification confidence associated with the IGBP label, a prediction for the most likely alternative class, and class labels for several other classification schemes that are used by the global modeling community. Initial results based on 5 months of MODIS data are encouraging. At global scales, the distribution of vegetation and land cover types is qualitatively realistic. At regional scales, comparisons among heritage AVHRR products, Landsat TM data, and results from MODIS show that the algorithm is performing well. As a longer time series of data is added to the processing stream and the representation of global land cover in the site database is refined, the quality of the MODIS land cover product will improve accordingly.

© 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Land cover, and human and natural alteration of land cover, play a major role in global-scale patterns of the climate and biogeochemistry of the earth system. Terrestrial ecosystems exert considerable control on the planet’s biogeochemical cycles, which in turn significantly influence the climate system through the radiative properties of greenhouse gases and reactive species. Further, variations in topography, albedo, vegetation cover, and other physical characteristics of the land surface influence surface–atmosphere fluxes of sensible heat, latent heat, and momentum, which in turn influence weather and climate (Sellers et al., 1997).

Until recently, land-cover data sets used within models of global climate and biogeochemistry were derived from preexisting maps and atlases. The most commonly used data sets were compiled by Olson and Watts (1982), Matthews (1983), and Wilson and Henderson-Sellers (1985). While these (and other) data sources provided the best available source of information regarding the distribution of global land cover at the time, several limitations are inherent in their use. For example, global land cover is intrinsically dynamic. Therefore, the source data upon which these maps were compiled is now out of date in many areas. Further, each of these data sets utilize different spatial scales and classification schemes, which are generally different from those required by contemporary models. As a result, confusion regarding how the reference class units are translated to the classification system and scale used by a model can lead to errors in the final product. For example, floristic and climatically based classifications, while not inherently compatible, may need to be combined...
and reclassified to generate physiognomic cover types (Townshend, Justice, Li, Gurney, & MacManus, 1991). Finally, conventional land cover data sets such as those mentioned above often provide maps of potential vegetation inferred from climatic variables such as temperature and precipitation. In many regions, especially where humans have dramatically modified the landscape, the true vegetation type or land cover can deviate significantly from the potential vegetation.

More recently, remote sensing has been used as a basis for mapping global land cover using data from the advanced very high-resolution radiometer (AVHRR). The first global land cover map compiled from remote sensing was produced by DeFries and Townshend (1994) using maximum likelihood classification of monthly composited AVHRR normalized difference vegetation index (NDVI) data at 1° spatial resolution. Subsequently, DeFries, Hansen, Townshend, and Sohlberg (1998) used a decision tree classification technique to produce a map of global land cover at 8-km spatial resolution, again from AVHRR data. Most recently, Loveland et al. (2000) used an unsupervised classification of monthly composited AVHRR NDVI data acquired between April 1992 and March 1993 to map global land cover at 1-km spatial resolution. Hansen, DeFries, Townshend, and Sohlberg (2000) used the same AVHRR data set, but adopted a supervised classification strategy using decision trees. Prior to the availability of newer, high quality data sets from instruments onboard the Terra (and other) space craft, data sets derived from the AVHRR provided the best available remote sensing-based maps of global land cover. However, because the information content of AVHRR data is limited for land cover mapping applications, numerous uncertainties are present in these maps (Loveland et al., 1999).

The moderate resolution imaging spectroradiometer (MODIS) on-board Terra includes seven spectral bands that are explicitly designed for land applications, and data from MODIS is now available for land cover mapping applications. The enhanced spectral, spatial, radiometric, and geometric quality of MODIS data provides a greatly improved basis for monitoring and mapping global land cover relative to AVHRR data. Further, the algorithms being used with MODIS data have been designed for operational mapping, thereby providing rapid turn-around between data acquisition and map production. The timeliness and quality of land cover maps produced from MODIS should, therefore, be useful for a wide array of scientific applications that require land cover information at regional to global scales.

In this paper, we describe global land cover mapping activities being conducted using data from MODIS. The first objective of this paper is to provide an overview of the MODIS land cover product, describing the main elements of the classification methodologies and databases being used to map global land cover from MODIS data. As part of this discussion, we provide information regarding algorithm assessment and validation. The second objective is to provide a summary of early results at both global and regional scales, and to highlight specific successes, lessons learned, and areas of ongoing research.

2. Algorithm description

The MODIS global land cover product suite includes two main parameters. The first parameter provides global land cover at 1-km spatial resolution updated at quarterly (96-day) intervals (Strahler et al., 1999; Friedl et al., 2000a). Note that because land cover is largely static at this time scale, early quarterly releases will effectively represent revisions to the existing map. Subsequent releases should stabilize rapidly, and once this has happened, we anticipate scaling back to annual or semiannual updates. These updates will reflect improvements to the global land cover map arising from continued site database development, refinements to the classification algorithm, and feedback regarding map quality from the user community and validation activities. In addition to the 1-km maps, the MODIS global land cover product is also being provided at coarser resolution (nominally 28 km = 1/4°) to serve the needs of the global modeling community who typically require spatial resolutions much coarser than 1 km. As part of this data set, the sub-grid scale frequency distribution for each class is included to provide information regarding fine resolution spatial variability in land cover within each 1/4° cell.

The second parameter, land cover dynamics, provides a measure of land cover change, again at 1-km spatial resolution, but at annual time scales. This product employs a change-vector algorithm (Lambin & Strahler, 1994a,b) to describe land cover change, and requires two full years of data for product generation. Note that this parameter is designed to identify areas where land surface properties exhibit change, independent of land cover (e.g., drought or interannual variation in biospheric response to climate forcing). Because substantially less than one full year of MODIS data is available at the time of this writing, this paper emphasizes the static MODIS land cover product. Within this context, it is important to note that the MODIS global land cover product discussed in this paper is distinct from the MODIS vegetation cover conversion and vegetation continuous fields products, which address different aspects of land cover and are described in other papers within this volume.

The MODIS land cover classification algorithm (MLCCA) uses a supervised classification methodology (Schowengerdt, 1997) and includes two key elements. First, the algorithm utilizes a database of sites distributed globally that provides exemplars of each land cover type (and subpopulations within each type). Second, supervised classification algorithms are used to classify the high-dimensional (multispectral and multitemporal) data pro-
vided by MODIS. Thus, implementation of the MLCCA involved substantial challenges in terms of both compiling a globally representative database of sites for classifier training, and in implementing algorithms that overcome previously unconsidered challenges involved in classifying high data volumes with complex feature attributes at global scales. In the sections that follow, we describe these methods in more detail.

2.1. Land cover units

The primary objective of the MODIS land cover product is to facilitate the inference of biophysical information for use in regional and global modeling studies. Thus, the specific classification units of land cover need to be both discernible with high accuracy from remotely sensed and ancillary data, and directly related to physical characteristics of the surface, especially vegetation. A set of 17 such land cover classes was developed by the International Geo-

<table>
<thead>
<tr>
<th>IGBP land cover units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural vegetation</td>
<td></td>
</tr>
<tr>
<td>Evergreen needleleaf forests (127)</td>
<td>Lands dominated by needleleaf woody vegetation with a percent cover >60% and height exceeding 2 m. Almost all trees remain green all year. Canopy is never without green foliage.</td>
</tr>
<tr>
<td>Evergreen broadleaf forests (201)</td>
<td>Lands dominated by broadleaf woody vegetation with a percent cover >60% and height exceeding 2 m. Almost all trees and shrubs remain green year round. Canopy is never without green foliage.</td>
</tr>
<tr>
<td>Deciduous needleleaf forests (16)</td>
<td>Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 m. Consists of seasonal needleleaf tree communities with an annual cycle of leaf-on and leaf-off periods.</td>
</tr>
<tr>
<td>Deciduous broadleaf forests (52)</td>
<td>Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 m. Consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.</td>
</tr>
<tr>
<td>Mixed forests (111)</td>
<td>Lands dominated by trees with a percent cover >60% and height exceeding 2 m. Consists of tree communities with interspersed mixtures or mosaics of the other four forest types. None of the forest types exceeds 60% of landscape.</td>
</tr>
<tr>
<td>Closed shrublands (24)</td>
<td>Lands with woody vegetation less than 2 m tall and with shrub canopy cover >60%. The shrub foliage can be either evergreen or deciduous.</td>
</tr>
<tr>
<td>Open shrublands (78)</td>
<td>Lands with woody vegetation less than 2 m tall and with shrub canopy cover between 10% and 60%. The shrub foliage can be either evergreen or deciduous.</td>
</tr>
<tr>
<td>Woody savannas (69)</td>
<td>Lands with herbaceous and other understory systems, and with forest canopy cover between 30% and 60%. The forest cover height exceeds 2 m.</td>
</tr>
<tr>
<td>Savannas (56)</td>
<td>Lands with herbaceous and other understory systems, and with forest canopy cover between 10% and 30%. The forest cover height exceeds 2 m.</td>
</tr>
<tr>
<td>Grasslands (106)</td>
<td>Lands with herbaceous types of cover. Tree and shrub cover is less than 10%.</td>
</tr>
<tr>
<td>Permanent wetlandsa (11)</td>
<td>Lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present either in salt, brackish, or fresh water.</td>
</tr>
<tr>
<td>Developed and mosaic lands</td>
<td></td>
</tr>
<tr>
<td>Croplands (240)</td>
<td>Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.</td>
</tr>
<tr>
<td>Urban and built-up landsb (40)</td>
<td>Land covered by buildings and other man-made structures.</td>
</tr>
<tr>
<td>Cropland/natural vegetation mosaics (70)</td>
<td>Lands with a mosaic of croplands, forests, shrubland, and grasslands in which no one component comprises more than 60% of the landscape.</td>
</tr>
<tr>
<td>Non-vegetated lands</td>
<td></td>
</tr>
<tr>
<td>Snow and ice (12)</td>
<td>Lands under snow/ice cover throughout the year.</td>
</tr>
<tr>
<td>Barren (110)</td>
<td>Lands with exposed soil, sand, rocks, or snow and never have more than 10% vegetated cover during any time of the year.</td>
</tr>
<tr>
<td>Water bodies (50)</td>
<td>Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt–water bodies.</td>
</tr>
</tbody>
</table>

a Not included in the early results presented in this paper.

b Based on the digital chart of the world.
tated land cover units include snow and ice, barren land, and water bodies.

Note that the IGBP classes can be relabeled (“cross-walked”) to provide compatibility with other land cover systems used by the modeling community (e.g., Running, Loveland, Pierce, Nemani, & Hunt, 1995; Sellers et al., 1996; Bonan, 1998). For some classes, there is a direct mapping of one or more IGBP classes to an equivalent class required by such models. Some classes, however, have no equivalents. For example, wetlands and urbanized areas do not appear in some modeling schemes. Further, because the agricultural mosaic class is defined to consist of a mixture of land cover types, cross-walking this class label can be problematic. To help users resolve such incompatibilities, the MODIS land cover parameter includes a secondary label for each 1-km pixel that should help to determine acceptable alternatives to the primary IGBP label. Note that the secondary labels are also designed to be used in conjunction with measures of classification confidence assigned at each pixel (see below).

2.2. Global site database

The MLCCA uses a supervised classification strategy. Therefore, the quality of the training site database strongly influences the quality of classification results. Because global land cover is highly diverse, a key requirement of the database is that it be geographically comprehensive and include variations in land cover within each class of interest. To meet these needs, the System for Terrestrial Ecosystem Parameterization (STEP) was developed (Muchoney, Strahler, Hodges, & LoCastro, 1999). STEP was explicitly designed as a general purpose database for ecological studies that may be used to characterize the ecological and biophysical state of the earth’s surface. In this way, STEP provides a flexible and powerful database that both meets the needs of the MLCCA and may also be used for other land cover and ecological studies. Significantly, because of the classification-free design of STEP, future global land cover mapping efforts based on MODIS (and other data sources) will not be tied to mapping IGBP classes only.

Within the MLCCA STEP is being used to create a global database of land cover sites that serves as a basis for classification estimation and assessment. Sites are established and described based on high-resolution remote sensing and ancillary data, and are defined as land areas possessing uniform land cover ranging in size from 1 to roughly 200 km². Because of the need for a reliable database with minimal errors, locations that were judged to have high potential for land cover change were explicitly excluded from consideration. Population of the STEP database for a site involves assigning values to a suite of parameters related to the structural, functional, and compositional components of the vegetation and land cover at the site. Complete details regarding STEP are provided in Muchoney et al. (1999).

Currently, the STEP database consists of 1373 sites distributed globally. However, it is important to note that the database is dynamic and requires constant maintenance and augmentation to meet the needs of the MODIS global land cover mapping effort. Initial site selection was performed opportunistically based on available Landsat data. Since the launch of Landsat 7, a more strategic design was adopted that was specifically geared towards capturing regions and land cover types that were underrepresented in the database. Virtually all of the TM data were acquired after 1990, with much of the imagery obtained by Landsat 7 in the late 1990s. The sites included in the database are derived from manual interpretation of Landsat Thematic Mapper (TM) data, augmented by ancillary map data, as available. The foundation of the site database was provided by the IGBP core validation effort, which consists of 306 sites interpreted by regional experts (Loveland et al., 1999). This data set has been supplemented by over 1000 sites interpreted by analysts at Boston University. To ensure the quality and consistency of the database, STEP information for each site is compiled by a primary analyst, and then examined by at least one (and often two) secondary analysts. In cases of disagreement, the final set of information recorded in STEP is decided by consensus among all of the analysts. In cases where consensus cannot be achieved, the site is discarded.

A key attribute of the global STEP database is the geographic representation of global geographic and ecological regimes. Because much of our early database and algorithm development and prototyping efforts focused on central America and subsequently North America (Friedl et al., 2000a,b; Muchoney et al., 2000), the current database is oversampled in these regions. To assess the geographic coverage of the STEP database outside of these regions, we have used the map of Olson land cover classes compiled by Loveland et al. (2000) to assess the geographic and ecological sampling of STEP, both within continents and globally. To do this, the STEP site database was overlaid on the map of Olson land cover classes (96 classes total) on a continent-by-continent basis. In doing so, the geographic and ecological coverage of STEP could be assessed using an independent data source with more detailed ecological information than other available global land cover data sources such as the MODIS at-launch land cover products described by Loveland et al. (2000) and Hansen et al. (2000).

At the most general level, inspection of the global distribution of STEP sites shows that each continent includes STEP sites for each IGBP class. However, results from intersection of the STEP database with the Olson land cover map have revealed subclasses that are either not sampled or undersampled. Results from this analysis are being used to fill-in gaps in the geographic sampling of
STEP within each of the major continents. To illustrate, Fig. 1 shows results from this analysis for Africa and demonstrates that by and large, the STEP database is inclusive of the large majority of Olson land cover classes for this landmass. Eight Olson classes (out of 36 total) were not captured by the STEP database, all of which belong to agricultural classes. Fig. 1 shows the location of TM scenes that have been targeted to fill in these gaps. Note that this analysis considers ecological and geographic coverage only, and does not include consideration of within-class variation.

Fig. 1. STEP sampling of Olson classes in Africa. The red flags show the distribution of sites and the colored areas show Olson classes not sampled by the STEP database. Candidate TM scenes to fill in gaps are also shown.
However, to a first order, the results from this exercise show that the STEP database includes relatively good coverage within Africa. These results are representative of the other continents, with the exception of Eurasia, which is characterized by complex vegetation and land cover, and which is the focus of ongoing STEP database development.

2.3. Algorithm inputs

Table 2 presents the list of inputs provided to the MLCCA. These inputs (features) are designed to exploit all available information dimensions from MODIS. In particular, spectral, temporal, directional, and spatial information are all included as part of the feature space provided to the algorithm. At present, the two main information dimensions being used are the spectral and temporal domains. Spectral information is provided by the seven MODIS land bands (channels 1–7), and by the enhanced vegetation index (EVI) product, which provides a measure of the amount and fractional cover of live vegetation within each 1-km pixel (Huete & Liu, 1994). Both the reflectance and EVI data are cloud-cleared and atmospherically corrected, and are designed to be representative for 16-day periods.

As we alluded to above, the spectral, radiometric, and geometric quality of MODIS data provides a significant improvement in the input feature space relative to the heritage AVHRR data previously used for global land cover mapping. While significant correlation is present among the MODIS land bands, spectral information provided by the MODIS short-wave infrared bands affords at least one additional dimension of information relative to the red and near infrared bands provided by AVHRR data (see for example Crist & Cicone, 1984). Further, the sub-pixel geometric registration of MODIS data in combination with superior calibration, cloud screening, and atmospheric correction provides a substantially improved basis for land cover mapping relative to AVHRR data. Finally, because the MODIS instrument views the earth’s surface from a range of view zenith angles, the MLCCA uses nadir BRDF-adjusted reflectance (NBAR) data based on the MODIS BRDF/albedo product (Lucht, Schaaf, & Strahler, 2000). By using NBAR data, a substantial source of noise (i.e., directional reflectance effects unrelated to land cover) is removed from the input data.

To exploit temporal information related to vegetation phenology, the algorithm is designed to ingest 12 months of 16-day NBAR and EVI data. Once a full year of consistently calibrated data is available, phenological metrics (e.g., Reed et al., 1994) derived from the EVI will also be included as inputs. In the longer term, we anticipate exploiting directional information derived from the MODIS BRDF/albedo product, and spatial texture information derived from the MODIS 250-m bands. The former should provide information related to land cover structure, while the latter will provide information on sub-kilometer scale land cover heterogeneity. At present, however, the MLCCA relies exclusively on spectral and temporal information.

2.4. Classification algorithms

To provide robust and repeatable maps of global land cover at quarterly time steps, the MLCCA requires classification algorithms that are capable of efficiently processing large volumes of complex and high-dimensional data. To meet these needs, the classification algorithms used by the MODIS land cover product employ a supervised methodology.

Two main classification algorithms have been extensively tested for use within the MLCCA processing flow: a univariate decision tree (C4.5; Quinlan, 1993) and an artificial neural network (ARTMAP; Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992). Both C4.5 and ARTMAP are distribution-independent and make no assumptions regarding the underlying frequency distribution of the data being classified. This attribute is particularly important at global scales because virtually all classes of interest exhibit multimodal frequency distributions and, therefore, violate assumptions required by traditional supervised approaches such as the maximum likelihood classifier. An excellent example of this property is illustrated by semiarid systems such as grasslands, which are globally extensive and sensitive to precipitation timing and amount (Goward & Prince, 1995). This sensitivity leads to distinct spectral-temporal patterns (subclasses) within the highly

Table 2: The input features used by the MODIS land cover classification algorithm

<table>
<thead>
<tr>
<th>Input</th>
<th>Source</th>
<th>Description</th>
<th>Time step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface reflectance</td>
<td>MODIS reflectance</td>
<td>BRDF-adjusted, 7-channel nadir reflectance</td>
<td>16-day</td>
</tr>
<tr>
<td>Vegetation index</td>
<td>MODIS VI</td>
<td>EVI index</td>
<td>16-day</td>
</tr>
<tr>
<td>BRDF</td>
<td>MODIS BRDF</td>
<td>shape information</td>
<td>16-day</td>
</tr>
<tr>
<td>Land/water</td>
<td>USGS land/sea mask initially</td>
<td>terrestrial/marine boundary</td>
<td>fixed</td>
</tr>
<tr>
<td></td>
<td>eventually based on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>previous quarterly MODIS land</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cover)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow/ice cover</td>
<td>MODIS snow/ice</td>
<td>snow and ice</td>
<td>16-day</td>
</tr>
<tr>
<td>Surface temperature</td>
<td>MODIS surface temp.</td>
<td>maximum</td>
<td>16-day</td>
</tr>
<tr>
<td>Texture</td>
<td>MODIS reflectance</td>
<td>maximum texture based on 250m channel 1</td>
<td>16-day</td>
</tr>
<tr>
<td>Topography</td>
<td>USGS DEM</td>
<td>slope aspect, slope gradient, elevation</td>
<td>fixed</td>
</tr>
</tbody>
</table>

* Used in early results presented in this paper.
generalized classes defined by the IGBP system that must be accommodated by the MLCCA. For a variety of mostly practical reasons, the MLCCA has adopted C4.5 as the primary classification algorithm used in the generation of global land cover maps. As we discuss below, missing data caused by cloud cover and incomplete coverage of NBAR data present a key technical challenge to the MLCCA. In this regard, C4.5 includes mature and robust procedures for handling missing data (Quinlan, 1993). Similar methods for ARTMAP are currently in development, but are not sufficiently mature at this time for inclusion in operational code. As a result, C4.5 is being used because of efficiency considerations and because of its ability to handle missing data. Friedl, Brodley, and Strahler (1999), Friedl et al. (2000a,b) and Gopal, Woodcock, and Strahler (1999) provide details regarding the evaluation and testing of C4.5 and ARTMAP for the MLCCA.

A key feature of the MLCCA is a technique known as “boosting” (Freund, 1995). Boosting is one of numerous ensemble classification methods that were developed in the mid- to late 1990s that have been widely shown to enhance classification accuracy (Bauer & Kohavi, 1999; Dietterich, 2000). Boosting also serves to minimize the sensitivity of the classification algorithm to noise in feature data and labeling errors in training data. While many forms of ensemble algorithms have been developed, most use iterative methods where multiple classifications are estimated based on resampled versions of the training data. The final classification for each case is then produced by a weighted vote. Indeed, Friedman, Hastie, and Tibshirani (2000) recently described boosting as “one of the most important recent developments in classification methodology.” While most of the development work for boosting has been performed in the machine learning community, recent work has confirmed that boosting is effective for remote sensing-based land cover mapping (Friedl et al., 1999; Melver & Friedl, 2001). It is important to note that boosting is not effective in the presence of excessive error in training labels, or if the base classification algorithm (e.g., a decision tree) does not provide classification accuracy greater than 50%. To minimize problems associated with the former issue, substantial efforts have been devoted to quality assurance of the STEP site database, and the latter issue does not apply.

An additional (and perhaps more important) attribute of boosting arises from recent work by Friedman et al. (2000), who demonstrated that boosting is equivalent to a form of additive logistic regression. Prior to this development, boosting was largely viewed as a black box, albeit a very successful one. The work of Friedman et al. (2000) provides a major step forward because it explains this technique using well-established statistical theory. By using boosting in association with a base classification algorithm (e.g., C4.5), probabilities of class membership can be assigned to each class at every pixel. Using this approach, we have developed methods to (1) assign classification confidence at each pixel and (2) correct major errors based on ancillary data encoded in the form of prior probabilities (Melver & Friedl, 2002). In Section 3, we provide further details and examples regarding the use of boosting within the MLCCA.

2.5. Validation and assessment

Validation and assessment of classification results is a key component of the MLCCA, and a variety of approaches are being pursued to both quantify the quality of land cover maps produced from MODIS data and assess specific weaknesses. These approaches include both formal statistical assessment methods and less formal qualitative assessments.

To provide quantitative estimates of map accuracy, cross-validation methods will be used to estimate overall and class specific accuracies at both global and continental scales. In addition, estimates of classification confidence are assigned to each pixel based on information extracted from the results of boosting (see below). To avoid biased results arising from nonindependent test data at the scale of pixels within individual sites, cross-validation methods are used that enforce spatial separation of training and testing data. This type of procedure is necessary because at 1-km spatial resolution, MODIS data exhibits considerable spatial auto-correlation at the scale of individual sites. As a result, cross-validation procedures that utilize random splits of site data must ensure that the test data are independent from the test data, and failure to impose this condition can result in spuriously inflated classification accuracies (e.g., Friedl et al., 2000b). Less formally, we have developed collaborations with international groups to provide us with feedback regarding the quality of the MODIS global land cover product at local and regional scales. While such feedback cannot be quantified in the same way as a formal statistical assessment, this type of information is an invaluable resource for improving our maps.

In the long run, validation of the MODIS global land cover product will require a carefully designed probability-based sample design. This type of approach is the only means of providing objective and statistically defensible accuracy statistics (Stehman, 2001). Unfortunately, current resources do not provide for this type of effort, and so for the short term, validation efforts will rely on the more opportunistic strategies described above.

3. Early results

The algorithm theoretical basis document for the MODIS land cover parameter provides for a release date 15 months after the launch of Terra (Strahler et al., 1999). The basis for this timing was to provide a full year’s worth of data for classification, and to allow several months for resolving
unforeseen problems in data processing. The results presented below are based on nine 16-day periods spanning the period from July 11 to December 17, 2000 (note, data were unavailable from July 27 to August 11 due to problems in ground processing). These composites represent all available data of acceptable quality at the time of this writing and provided the basis of the first official (“beta”) release of the MODIS land cover product on April 13, 2001. Note that because this data set does not include a full annual cycle, the MLCCA is missing a key dimension of the input feature space that it is explicitly designed to exploit (i.e., vegetation phenology). Also, because of cloud cover and data processing issues many pixels possess significantly fewer than nine views. Fig. 2 presents histograms for the number of views available at each land pixel globally and for each of the earth’s major landmasses, and illustrates the degree to which data are missing for large areas of the earth’s surface.

For the results presented below, classifications were only performed for those pixels where three or more views were available. Despite the limited data set available, initial results from the MLCCA are encouraging and conclusively demonstrate the quality of MODIS data for land cover mapping applications. In particular, the quality of the early results strongly supports the assertion that the spectral information content of MODIS provides a sound basis for large-scale land cover mapping.

3.1. Global and regional results

Fig. 3 presents a global classification using the limited input data described above. At the scale presented, it is difficult to assess the quality of the MLCCA results in any concrete way. Nonetheless, the global distribution of land cover as depicted in Fig. 3 appears to be realistic, and the coarse scale distribution of natural vegetation is in good agreement with the expected distribution of forests (and the IGBP subtypes thereof), shrublands, savannas, and grasslands. Further, the agricultural belts of North America, South America, and Europe are all well characterized, at least qualitatively. At the same time, some obvious prob-
Fig. 3. Early result from MODIS showing the global map of land cover based on the IGBP classification. Missing data is portrayed in black.
lems are evident. In particular, the quality of the map decreases at higher latitudes (>70°) because of missing data and lower data quality caused by low solar zenith angles, and confusion is present between agriculture and natural vegetation throughout. Operationally, the MLCCA uses land cover values from the previous quarter to fill-in values where the classification for the current quarter fails. In this case, the EDC IGBP map is used for this purpose, and represents about 10% of the land pixels, mostly in the tropics. Once a 12-month cycle of observations is available, these cases should be somewhat rare.

To provide a representative sample of classification results from the MLCCA at regional scales, Fig. 4 presents four panels showing different representations of land cover at the scale of four TM scenes in the northwestern United States. This region possesses substantial variation in land cover including agricultural land in the Willamette Valley of Oregon, conifer forests in the coastal and Cascade ranges, and more arid grasslands, shrublands, and agriculture in the eastern portion associated with the rain-shadow of the Cascade Mountains. Fig. 4a presents the at-launch IGBP classification for this area produced by EDC from 1992 to 1993 1-km AVHRR data (Loveland et al., 1999), Fig. 4b presents the MODIS prototype classification produced by Friedl et al. (2000a) using 1995–1996 1-km AVHRR data, Fig. 4c presents four TM images for the same region, and

Fig. 4. Comparison of (a) the EDC at-launch land cover, (b) the prototype land cover map from AVHRR, (c) four Landsat TM images, and (d) the MODIS Beta release classification for a region encompassing four TM scenes in the Pacific northwest region of the United States.
Fig. 4d presents results from the MLCCA for MODIS data from July to December 2000.

Visual inspection shows substantial differences among these different depictions of land cover. One obvious observation is that the MODIS-based classification provides more spatial detail than the EDC IGBP map, particularly in the forested areas and in the arid eastern areas. Further, comparison of the supervised classifications based on AVHRR and MODIS data (Fig. 4b and d) exhibits distinct differences within this area. Because the training site data used to generate both these maps is the same, most of these differences arise from the improved spectral and radiometric quality of MODIS data relative to AVHRR data.

3.2. Exploiting boosting: classification confidence and prior probabilities

As we indicated above, boosting is used extensively within the MLCCA. Specifically, the statistical interpretation of boosting provided by Friedman et al. (2000) allows robust estimates of per pixel probabilities of class membership to be assigned to each class at each pixel. This methodology has been previously used with maximum likelihood classification techniques that assume Gaussian density functions for the underlying data (e.g., Foody, Campbell, Todd, & Wood, 1992). For non-Gaussian data, probability estimates of class membership can be estimated directly from decision trees or neural networks (for example, based on the frequency distribution of examples in the leaf nodes of a decision tree), but such estimates are generally quite crude (Friedman et al., 2000). The interpretation of boosting provided by Friedman et al. allows these estimates to be made with substantially more statistical rigor and robustness. Within the MLCCA, we have exploited this for two main purposes: (1) to provide per pixel estimates of classification confidence (McIver & Friedl, 2002); and (2) to include ancillary information to help resolve confusion between classes that have equivocal spectral separability, especially agriculture and natural vegetation, at global scales (McIver & Friedl, 2002). This technique also allows the MLCCA to provide a secondary label (the second most likely class) to pixels where the confidence in the primary label is not high.

Fig. 5 presents three panels showing (a) the classification confidence assigned to the IGBP label at each pixel, (b) the secondary label provided by the MLCCA for the area shown in Fig. 4, and (c) the frequency distribution of estimated confidence in the primary label. The confidence at each pixel corresponds to the conditional probability assigned to the primary class label using boosting. To portray this informa-
tion while retaining information related to the spatial distribution of classes, the confidence is represented by the degree of color saturation at each pixel (Fig. 5a). For the sake of illustration, the forest, shrubland, and savanna subclasses have been combined to avoid confusion between variation in classes versus variation in classification confidence (hue versus saturation, respectively).

Fig. 5a and b shows that substantial spatial variance is present in the estimated confidences, which range from 40% to 100%. Previously, McIver and Friedl (2002) have shown that the mean classification confidence within a region predicted by boosting provides a good estimate of the expected classification accuracy. This suggests that the approximate accuracy of the MLCCA for the area shown in Fig. 4 is 75%. As the number of views increases to include a full year of data, the classification confidences (and map accuracy) should increase accordingly. Finally, Fig. 5c shows the map of secondary class labels provided by
the MLCCA for the same area. This map reveals that the secondary labels exhibit spatially coherent and reasonable patterns relative to the primary map labels. For example, common secondary labels associated with shrublands are agriculture and grasslands.

In Fig. 6, we present results that illustrate how ancillary information encoded in the form of prior probabilities has been used in the MLCCA to correct large-scale confusion between problematic classes. In particular, agriculture is both globally extensive and highly variable in terms of its spectral and temporal properties. Indeed, Loveland et al. (1999) and Hansen et al. (2000) both indicate that agriculture is by far the most problematic class in global land cover mapping contexts. To address this issue, McIver and Friedl (2002) used the maps compiled by Ramankutty and Foley (1998) depicting the global distribution and intensity of agriculture to resolve obvious confusion between agriculture and other land cover types in an AVHRR-based classification of North America.

To include this approach within the MLCCA, the maps of Ramankutty and Foley (1998) and Loveland et al. (2000) were used to parameterize the prior probability for IGBP classes globally. To do this, Bayes’ rule was used where the conditional probabilities of class membership at each pixel were estimated using boosting. The prior probability for the presence of agriculture was scaled from 0.1 to 1.0 based on the estimates of agricultural intensity provided by Ramankutty and Foley (1998), and the prior probabilities for other IGBP classes were estimated from 200 × 200 km moving windows using the EDC at-launch IGBP map. This procedure uses a parameter (c), scaled from 0 to 1.0, which constrains the influence of the prior probabilities contingent on the relative quality of the ancillary data (Chen, Ibrahim, & Yianoutsos, 1999). McIver and Friedl (2002) suggest that

Fig. 6. Map showing classification changes arising from inclusion of prior probabilities for agriculture (yellow = change from agriculture to natural vegetation; green = change from natural vegetation to agriculture; black = no change.)
a simple way to select a value for this parameter is to use the accuracy of the ancillary map data (i.e., if the map accuracy of the ancillary data is 79%, \(c = 0.79 \)).

Because of the way that boosting estimates per pixel class membership probabilities, the effect of including prior probabilities in this fashion is fairly conservative. In other words, the influence of the prior information is restricted to cases where the spectral classification is ambiguous (i.e., poor spectral-temporal separability among two or more classes) and the ancillary information is unequivocal. Further, in cases where the classes are separable in the input feature space, the ancillary information has little or no effect. Fig. 6 presents a map showing the pixels that changed from natural vegetation to agriculture (and vice versa), again for the area shown in Fig. 4, as a result of including ancillary information related to the distribution of agriculture. In total, the use of prior probabilities resulted in 23.3% of the pixels in this region changing from agriculture to natural vegetation, while 0.7% changed from natural vegetation to agriculture.

These results reflect the fact that the semiarid natural vegetation in the rain shadow of the Cascade Mountains possesses spectral-temporal signatures in the MODIS data that are similar to agriculture. Thus, inclusion of ancillary information related to the intensity of agricultural land use helped to reduce overestimation of agriculture in this region. Once a full year of MODIS data is available, the influence of the ancillary data should become smaller. Note that the similarity in spectral-temporal signatures between agriculture and natural vegetation in this region is also reflected in the secondary labels shown in Fig. 5c. Indeed, this problem is evident in the AVHRR-based prototype classification for this region shown in Fig. 4b. While quantitative assessment regarding the success of this procedure has not yet been performed, the results seem to be qualitatively reasonable and are consistent with the distribution of agriculture in the EDC IGBP map for this region.

4. Discussion and conclusions

This paper describes the databases and methods being used to create the MODIS land cover product and has presented early results from applying the MLCCA to 5 months of MODIS data. The classification strategy of the MLCCA follows a supervised approach. To exploit the best available classification technology and to avoid assumptions related to the distribution of input data, the MLCCA uses a decision tree classification approach. Decision tree techniques previously have been shown to be effective for global land cover mapping problems. However, they are also highly sensitive to the training data used in the classification estimation stage. Therefore, classification results produced from MODIS data are heavily dependent on the integrity and representation of global land cover in the site data, and substantial ongoing efforts are devoted to maintaining and augmenting the STEP database.

Despite significant data limitations due to cloud cover and other processing problems, initial results based on 5 months of MODIS data are promising. The quality of early maps produced from MODIS is especially encouraging because one of the key information domains (i.e., the temporal domain) that the MLCCA is designed to exploit was incomplete. The quality of the early results presented in this paper, therefore, provides strong evidence supporting the radiometric quality and spectral information content of MODIS data for large-scale land cover mapping applications. MODIS data clearly provides a significant improvement in terms of quality relative to the heritage AVHRR data, and once a full year of well-calibrated data is available, we expect that the quality of the global land cover product will improve accordingly.

The MODIS land cover product utilizes the IGBP classification system. This system was initially selected to reflect the consensus representation for land cover desired by global models in the early to mid-1990s. In the last few years, it has become increasingly apparent that the framework provided by the IGBP scheme is limited. While IGBP classes can be cross-walked to other systems, cross-walking is often problematic, and the 17 classes provided within the IGBP scheme do not provide a universally acceptable basis for the diverse community of modeling and land resource scientists who might otherwise wish to exploit land cover data sets derived from MODIS.

Because the STEP database is explicitly designed to be classification-free, we have considerable flexibility in terms of the land cover products that may be produced from MODIS data. As a starting point, we are planning to provide global maps of the six-biome classification system described by Running et al. (1995), the 14-class classification system developed at the University of Maryland (DeFries et al., 1998), and the six-biome classification system described by Myneni, Nemani, and Running (1997) for radiative transfer and LAI/FPAR retrievals (see Latsch, Tian, Friedl, & Myneni, 2002). In the longer term, we hope to provide a hierarchical database structure where simplified land cover and vegetation attributes (e.g., vegetated versus nonvegetated; life form; leaf type; etc.) are stored in separate internally consistent layers. In this way, users can choose to use the IGBP or other available classification maps, or create their own classifications based on the data layers provided.

Acknowledgements

This work was supported by NASA contract NAS5-31369 and NASA Grant NAG5-7218.

References

(1999). MODIS land cover product, algorithm theoretical basis docu-
ment (ATBD), Version 5.0. Boston, MA: Center for Remote Sensing,
Department of Geography, Boston University.
Townshend, J. R. G., Justice, C., Li, W., Gurney, C., & McManus, J.
capabilities and future possibilities. Remote Sensing of Environment,
35, 243–255.
and soils data for use in general circulation climate models. Journal of
Climatology, 5, 119–143.